Borel chromatic numbers

José de Jesús Pelayo Gómez

Posgrado Conjunto en Ciencias Matemáticas UNAM-UMSNH Morelia, México

Winter School in Abstract Analysis Hejnice, Czech Republic.

• A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation.

< ロト < 同ト < ヨト < ヨト

• A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation. An element of V is called a vertex and elements of E are edges. We say that vertex v is adyacent to u iff $\{u, v\} \in E$.

- A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation. An element of V is called a vertex and elements of E are edges. We say that vertex v is adyacent to u iff $\{u, v\} \in E$.
- We could think a graph as a set of vertices and an irreflexive and symmetric relation.

- A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation. An element of V is called a vertex and elements of E are edges. We say that vertex v is adyacent to u iff $\{u, v\} \in E$.
- We could think a graph as a set of vertices and an irreflexive and symmetric relation.
- Graphs that we consider are graphs on *Polish spaces* (*V* is a Polish space).

- A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation. An element of V is called a vertex and elements of E are edges. We say that vertex v is adyacent to u iff $\{u, v\} \in E$.
- We could think a graph as a set of vertices and an irreflexive and symmetric relation.
- Graphs that we consider are graphs on *Polish spaces* (*V* is a Polish space).
- A coloring is a function c : V → k s.t. c(u) ≠ c(v) if u is adyacent to v. In that case we say that c is a coloring with k colors.

- A graph G is a pair (V, E), where V is a non empty set and $E \subseteq [V]^2$. In this talk I always use this notation. An element of V is called a vertex and elements of E are edges. We say that vertex v is adyacent to u iff $\{u, v\} \in E$.
- We could think a graph as a set of vertices and an irreflexive and symmetric relation.
- Graphs that we consider are graphs on *Polish spaces* (*V* is a Polish space).
- A coloring is a function c : V → k s.t. c(u) ≠ c(v) if u is adjacent to v. In that case we say that c is a coloring with k colors.
- Note that always there exists colorings for every graph because we could put k = |V|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - ののべ

 The chromatic number of a graph G is the minimum k such that there exists a coloring with k colors and we detone it by χ(G). The chromatic number of a graph G is the minimum k such that there exists a coloring with k colors and we detone it by χ(G).

• The Borel chromatic number of a graph G is the minimum k for that exists a Borel coloring with k colors. We are thinking k with the discrete topology and denote the Borel chromatic number of G by $\chi_B(G)$.

 The chromatic number of a graph G is the minimum k such that there exists a coloring with k colors and we detone it by χ(G).

• The Borel chromatic number of a graph G is the minimum k for that exists a Borel coloring with k colors. We are thinking k with the discrete topology and denote the Borel chromatic number of G by $\chi_B(G)$.

• The idea of this talk is present Borel versions of theorems regarding the chromatic number. It was extracted from an article due to Kechris, Solecki and Todorcevic.

Let G be a finite graph. If every vertex in G has at most n adjacent vertices then $\chi(G) \leq n+1$.

3

イロト 不得 トイヨト イヨト

Let G be a finite graph. If every vertex in G has at most n adjacent vertices then $\chi(G) \leq n + 1$.

Proof

• By induction over *n*. The case *n* = 0 is obvious because we have a graph without edges.

Let G be a finite graph. If every vertex in G has at most n adjacent vertices then $\chi(G) \le n + 1$.

Proof

- By induction over *n*. The case *n* = 0 is obvious because we have a graph without edges.
- For n > 0 we enumerate $V = \{v_i : i \in |V|\}$ and define A_i for $i \in |V|$ as follows:

•
$$A_0 = \{v_0\}.$$

• $A_{i+1} = A_i \cup \{v_{i+1}\}$ if v_{i+1} is not adyacent to any vertex in A_i and $A_{i+1} = A_i$ in other case.

Let G be a finite graph. If every vertex in G has at most n adjacent vertices then $\chi(G) \leq n + 1$.

Proof

- By induction over *n*. The case *n* = 0 is obvious because we have a graph without edges.
- For n > 0 we enumerate $V = \{v_i : i \in |V|\}$ and define A_i for $i \in |V|$ as follows:
 - $A_0 = \{v_0\}.$
 - $A_{i+1} = A_i \cup \{v_{i+1}\}$ if v_{i+1} is not adyacent to any vertex in A_i and $A_{i+1} = A_i$ in other case.
- Every vertex in G is in A_{|V|-1} or has an edge with some vertex in A_{|V|-1}. Then we could color A_{|V|-1} with one color and apply induction hypothesis to G − A_{|V|-1}.

Let G be a finite graph. If every vertex in G has at most n adjacent vertices then $\chi(G) \le n + 1$.

Proof

- By induction over *n*. The case *n* = 0 is obvious because we have a graph without edges.
- For n > 0 we enumerate $V = \{v_i : i \in |V|\}$ and define A_i for $i \in |V|$ as follows:
 - $A_0 = \{v_0\}.$
 - $A_{i+1} = A_i \cup \{v_{i+1}\}$ if v_{i+1} is not adyacent to any vertex in A_i and $A_{i+1} = A_i$ in other case.
- Every vertex in G is in A_{|V|-1} or has an edge with some vertex in A_{|V|-1}. Then we could color A_{|V|-1} with one color and apply induction hypothesis to G − A_{|V|-1}.
- Remark: in ZFC χ(G) ≤ n iff χ(F) ≤ n for every finite subgraph (De Bruijn–Erdős theorem). So we have an infinite version of the theorem.

Let G be a graph. If every vertex in G has at most n adyacent vertices and $E[Y] = \{v \in V : (\exists y \in Y)(\{v, y\} \in E)\}$ is Borel for every Borel set $Y \subseteq V$, then $\chi_B(G) \leq n + 1$.

イロト 不得 トイヨト イヨト 二日

Let G be a graph. If every vertex in G has at most n adyacent vertices and $E[Y] = \{v \in V : (\exists y \in Y)(\{v, y\} \in E)\}$ is Borel for every Borel set $Y \subseteq V$, then $\chi_B(G) \leq n + 1$.

Proof

• It's not hard to see that there exists a Borel coloring with ω colors for G using that the topology is second countable.

< 47 ▶

Let G be a graph. If every vertex in G has at most n adyacent vertices and $E[Y] = \{v \in V : (\exists y \in Y)(\{v, y\} \in E)\}$ is Borel for every Borel set $Y \subseteq V$, then $\chi_B(G) \leq n + 1$.

Proof

- It's not hard to see that there exists a Borel coloring with ω colors for G using that the topology is second countable.
- The proof is the same as in the finite version but we need to construct a Borel independent set in another way. Take a partition of independent sets {B_n : n ∈ ω} which is possible because χ_B(G) ≤ ω. Define:

$$A_0 = B_0.$$

$$A_{n+1} = A_n \cup (B_{n+1} \setminus E[A_n]).$$

$$A = \bigcup_n A_n$$

< 🗗 ►

Let G be a graph. If every vertex in G has at most n adyacent vertices and $E[Y] = \{v \in V : (\exists y \in Y)(\{v, y\} \in E)\}$ is Borel for every Borel set $Y \subseteq V$, then $\chi_B(G) \leq n + 1$.

Proof

- It's not hard to see that there exists a Borel coloring with ω colors for G using that the topology is second countable.
- The proof is the same as in the finite version but we need to construct a Borel independent set in another way. Take a partition of independent sets {B_n : n ∈ ω} which is possible because χ_B(G) ≤ ω. Define:

$$A_0 = B_0.$$

$$A_{n+1} = A_n \cup (B_{n+1} \setminus E[A_n]).$$

$$A = \bigcup_n A_n$$

Using induction and extending the topology s.t. A becomes clopen we finish the proof.

< 177 ▶

Some remarks

 The previous version of the theorem is the best possible, for example in *K*_{n+1} the bigger degree is *n* and χ(*K*_{n+1}) = *n* + 1 but there are graphs in which every vertex has infinite degree and χ(*B*) is finite.
 The previous version of the theorem is the best possible, for example in *K*_{n+1} the bigger degree is *n* and χ(*K*_{n+1}) = *n* + 1 but there are graphs in which every vertex has infinite degree and χ(*B*) is finite.

• Given a function $f : V \to V$, $G_f = (V, E)$ where uEv iff $u \neq v$ and f(u) = v or f(v) = u.

Let $f: V \to V$ be a function. Then $\chi(G_f) \leq 3$

3

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Let $f: V \to V$ be a function. Then $\chi(G_f) \leq 3$

Proof

• When $|V| \in \omega$ we do the proof by induction. For $|V| \leq 3$ is obvious.

< ロト < 同ト < ヨト < ヨト

Let $f: V \to V$ be a function. Then $\chi(G_f) \leq 3$

Proof

- When $|V| \in \omega$ we do the proof by induction. For $|V| \leq 3$ is obvious.
- Suppose |V| > 3. There is a vertex u of degree 0, 1 or 2 by pigeonhole principle.

→ Ξ → → Ξ →

Let $f: V \to V$ be a function. Then $\chi(G_f) \leq 3$

Proof

- When $|V| \in \omega$ we do the proof by induction. For $|V| \leq 3$ is obvious.
- Suppose |V| > 3. There is a vertex u of degree 0, 1 or 2 by pigeonhole principle.
- If we remove u from G we use hypothesis induction (maybe some f(v) = u and in that case we modify $f|V \setminus u$), then we can paint G v with three colors. It's easy to color V with three colors.

イモトイモト

Let $f: V \to V$ be a function. Then $\chi(G_f) \leq 3$

Proof

- When $|V| \in \omega$ we do the proof by induction. For $|V| \leq 3$ is obvious.
- Suppose |V| > 3. There is a vertex *u* of degree 0, 1 or 2 by pigeonhole principle.
- If we remove u from G we use hypothesis induction (maybe some f(v) = u and in that case we modify $f|V \setminus u$), then we can paint G v with three colors. It's easy to color V with three colors.
- If V is infinite we use again the compactness theorem. \blacksquare

< ロト < 同ト < ヨト < ヨト

Let $f: V \to V$ be a Borel function. Then $\chi_B(G_f) \leq 3$ or $\chi_B(G_f) = \omega$

< ロト < 同ト < ヨト < ヨト

Let $f: V \to V$ be a Borel function. Then $\chi_B(G_f) \leq 3$ or $\chi_B(G_f) = \omega$

Proof

• It's not hard to see that there exists a Borel coloring with ω colors for G_{f} .

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Let $f: V \to V$ be a Borel function. Then $\chi_B(G_f) \leq 3$ or $\chi_B(G_f) = \omega$

Proof

- It's not hard to see that there exists a Borel coloring with ω colors for G_{f} .
- Suppose that $\chi_B(G_f) < \omega$ and take a Borel partition $A_0, A_1, ..., A_{n-1}$ for some *n*.

3

イロト イポト イヨト イヨト

Let $f: V \to V$ be a Borel function. Then $\chi_B(G_f) \leq 3$ or $\chi_B(G_f) = \omega$

Proof

- It's not hard to see that there exists a Borel coloring with ω colors for G_{f} .
- Suppose that χ_B(G_f) < ω and take a Borel partition A₀, A₁, ..., A_{n-1} for some n.
- Define recursively B_i and C_i as follows:

3

イロト イポト イヨト イヨト

Let $f: V \to V$ be a Borel function. Then $\chi_B(G_f) \leq 3$ or $\chi_B(G_f) = \omega$

Proof

- It's not hard to see that there exists a Borel coloring with ω colors for $G_{f.}$
- Suppose that χ_B(G_f) < ω and take a Borel partition A₀, A₁, ..., A_{n-1} for some n.
- Define recursively B_i and C_i as follows:

$$B_{0} = A_{0} \text{ and } C_{0} = \emptyset, \\ B_{i+1} = B_{i} \cup \{x \in A_{i+1} : f(x) \notin B_{i}\} \text{ and } \\ C_{i+1} = C_{i} \cup \{x \in A_{i+1} : f(x) \in B_{i}\}$$

• Let $B = B_{n-1}$ and $C = C_{n-1}$. Note that $V = B \cup C$ and B and C are Borel. Our claim is that C is independent and B could be colored by two colors.

3

<ロト < 回ト < 回ト < 回ト</p>

• Suppose f(u) = v and $u \neq v$. $u \in A_i$ and $v \in A_j$ and $i \neq j$ because $\{A_i : i \in n\}$ is a coloring.

글 에 에 글 어

- Suppose f(u) = v and $u \neq v$. $u \in A_i$ and $v \in A_j$ and $i \neq j$ because $\{A_i : i \in n\}$ is a coloring.
- If u ∈ C then f(u) ∈ B_{i-1} and so v ∉ C. We conclude that C is an independent set.

- Suppose f(u) = v and $u \neq v$. $u \in A_i$ and $v \in A_j$ and $i \neq j$ because $\{A_i : i \in n\}$ is a coloring.
- If $u \in C$ then $f(u) \in B_{i-1}$ and so $v \notin C$. We conclude that C is an independent set.
- For $u \in B$ there are three cases:
 - For every $k f^{k}(u) \in B$ and $f^{n-1}(u) = f^{n}(u)$ for some n.
 - For every $k f^{k}(u) \in B$ and $f^{n-1}(u) \neq f^{n}(u)$ for every n.
 - There exists n s.t. $f^n(u) \in C$.

- Suppose f(u) = v and $u \neq v$. $u \in A_i$ and $v \in A_j$ and $i \neq j$ because $\{A_i : i \in n\}$ is a coloring.
- If $u \in C$ then $f(u) \in B_{i-1}$ and so $v \notin C$. We conclude that C is an independent set.
- For $u \in B$ there are three cases:
 - For every $k f^{k}(u) \in B$ and $f^{n-1}(u) = f^{n}(u)$ for some n.
 - For every $k f^k(u) \in B$ and $f^{n-1}(u) \neq f^n(u)$ for every n.
 - There exists n s.t. $f^n(u) \in C$.
- In first and third case we define c(u) = n modulo 2, c(u) = 2 if u ∈ C. The second case is imposible so we finish the proof.

Final words

• There is a Borel space V and Borel function $F : V \to V$ s.t. $\chi_B(G_F) = \omega$.

3

イロト イポト イヨト イヨト

Final words

• There is a Borel space V and Borel function $F : V \to V$ s.t. $\chi_B(G_F) = \omega$.

• We can define $G_{\{f_i:i \in n\}}$ and then $\chi(G_{\{f_i:i \in n\}}) \leq 2n + 1$. Is it true that $\chi_B(G_{\{f_i:i \in n\}}) \leq 2n + 1$ or $\chi_B(G_{\{f_i:i \in n\}}) = \omega$ for Borel functions?

Final words

• There is a Borel space V and Borel function $F : V \to V$ s.t. $\chi_B(G_F) = \omega$.

• We can define $G_{\{f_i:i \in n\}}$ and then $\chi(G_{\{f_i:i \in n\}}) \leq 2n + 1$. Is it true that $\chi_B(G_{\{f_i:i \in n\}}) \leq 2n + 1$ or $\chi_B(G_{\{f_i:i \in n\}}) = \omega$ for Borel functions?

 There is an analoguous definition for coloring of edges and Vizing's theorem says that whenever every vertex has at most n degree then χ'(G) ∈ {n, n + 1}. Is it true for Borel colorings? GRACIAS. THANK YOU DEKUJI